二阶行列式
--------------------------
| m_11 m_12 |
M = | m_21 m_22 |
| M | = m_11m_22 - m_12m_21
=====================
extra note:
行列式与矩阵的区别与联系
1、行列式的本质是线性变换的放大率,而矩阵的本质就是个数表。
2、行列式行数=列数,矩阵不一定(行数列数都等于n的叫n阶方阵),二者的表示方式亦有区别。
3、行列式与矩阵的运算明显不同
1) 相等:只有两个同型的矩阵才有可能相等,并且要求对应元素都相等;而两个行列式相等不要求其对应元素都相等,甚至阶数还可以不一样,只要两个行列式作为两个数的值是相等即可。
2) 加(减)法:两个矩阵相加(减)是将其对应元素相加(减),因此只有同型的矩阵才可以相加(减);而两行列式作为两个数总是可以相加(减)的。
3) 数乘运算:一个数乘以矩阵是指该数乘以矩阵的每一个元素;而数乘行列式,只能用此数乘行列式的某一行或列,提取公因数也是如此。
4) 乘法:矩阵的乘法不满足交换律,所以,一般地, AB≠BA。但是,如果 A与 B 都是 n 阶方阵,则有 |AB|=|A| |B|=|B| |A|=|BA|。
Reference:
百度知道, 2018, 行列式与矩阵的区别与联系, Link: https://zhidao.baidu.com/question/97241681.html [Accessed Date: 2018/04/12]